256 research outputs found

    Measuring a Parity Violation Signature in the Early Universe via Ground-based Laser Interferometers

    Full text link
    We show that pairs of widely separated interferometers are advantageous for measuring the Stokes parameter V of a stochastic background of gravitational waves. This parameter characterizes asymmetry of amplitudes of right- and left-handed waves and generation of the asymmetry is closely related to parity violation in the early universe. The advantageous pairs include LIGO(Livingston)-LCGT and AIGO-Virgo that are relatively insensitive to Omega_GW (the simple intensity of the background). Using at least three detectors, information of the intensity Omega_GW and the degree of asymmetry V can be separately measured.Comment: 6 pages, 3 figures, accepted for publication in PR

    Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer: geometric properties of antenna patterns and their angular power

    Full text link
    We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h_{eff} \sim 10^{-20} Hz^{-1/2} may reach ℓ∼\ell \sim 8-10 at f∼f∗=10f \sim f_*=10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (\ell=0) intensity anisotropy, and also to the dipole (\ell=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (\ell=odd), independently of the frequency band.Comment: RevTex4, 22 pages, 6 figures (low resolution), typos correcte

    Evolution of Cosmological Perturbation in Reheating Phase of the Universe

    Get PDF
    The evolution of the cosmological perturbation during the oscillatory stage of the scalar field is investigated. For the power law potential of the inflaton field, the evolution equation of the Mukhanov's gauge invariant variable is reduced to the Mathieu equation and the density perturbation grows by the parametric resonance.Comment: 10 pages, 1 figure

    Chasing the non-linear evolution of matter power spectrum with numerical resummation method: solution of closure equations

    Full text link
    We present a new numerical scheme to treat the non-linear evolution of cosmological power spectra. Governing equations for matter power spectra have been previously derived by a non-perturbative technique with closure approximation. Solutions of the resultant closure equations just correspond to the resummation of an infinite class of perturbation corrections, and they consistently reproduce the one-loop results of standard perturbation theory. We develop a numerical algorithm to solve closure evolutions in both perturbative and non-perturbative regimes. The present numerical scheme is particularly suited for examining non-linear matter power spectrum in general cosmological models, including modified theory of gravity. As a demonstration, we study weakly non-linear evolution of power spectrum in a class of modified gravity models, as well as various dark energy models.Comment: 17 pages, 8 figures; Fig.3 updated and typos fixe

    Self-gravitating Stellar Systems and Non-extensive Thermostatistics

    Full text link
    After introducing the fundamental properties of self-gravitating systems, we present an application of Tsallis' generalized entropy to the analysis of their thermodynamic nature. By extremizing the Tsallis entropy, we obtain an equation of state known as the stellar polytrope. For a self-gravitating stellar system confined within a perfectly reflecting wall, we discuss the thermodynamic instability caused by its negative specific heat. The role of the extremum as a quasi-equilibrium is also demonstrated from the results of N-body simulations.Comment: 15 pages, 8 figures, final version to apper in CM

    Gravitational-wave standard siren without redshift identification

    Full text link
    Proposed space-based gravitational-wave (GW) detectors such as DECIGO and BBO will detect ∼106\sim10^6 neutron-star (NS) binaries and determine the luminosity distances to the binaries with high precision. Combining the luminosity distances with cosmologically-induced phase corrections on the GWs, cosmological expansion out to high redshift can be measured without the redshift determinations of host galaxies by electromagnetic observation and can be a unique probe for dark energy. This article is based on the results obtained in [1] where we investigated constraining power of the GW standard siren without redshift information on the equation of state of dark energy with future space-based GW detectors. We also compare the results with those obtained with other instruments and methods.Comment: 10 pages, 3 figures, accepted to Journal of Physics: Conference Series as Proceedings of Amaldi
    • …
    corecore